3.524 \(\int \frac {\cos ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\)

Optimal. Leaf size=165 \[ \frac {2 \left (2 a^2+b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{3 b^2 d \sqrt {a+b \cos (c+d x)}}-\frac {4 a \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{3 b^2 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 b d} \]

[Out]

2/3*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/b/d-4/3*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(
1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*(a+b*cos(d*x+c))^(1/2)/b^2/d/((a+b*cos(d*x+c))/(a+b))^(1/2)+2/3*(2*a^2
+b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*((
a+b*cos(d*x+c))/(a+b))^(1/2)/b^2/d/(a+b*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.19, antiderivative size = 165, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {2791, 2752, 2663, 2661, 2655, 2653} \[ \frac {2 \left (2 a^2+b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{3 b^2 d \sqrt {a+b \cos (c+d x)}}-\frac {4 a \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{3 b^2 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 b d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^2/Sqrt[a + b*Cos[c + d*x]],x]

[Out]

(-4*a*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(3*b^2*d*Sqrt[(a + b*Cos[c + d*x])/(a +
b)]) + (2*(2*a^2 + b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(3*b^2*d*Sqr
t[a + b*Cos[c + d*x]]) + (2*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(3*b*d)

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2752

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2791

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> -Simp[
(d^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*(m + 2)), Int[(a + b*Sin[e + f*x
])^m*Simp[b*(d^2*(m + 1) + c^2*(m + 2)) - d*(a*d - 2*b*c*(m + 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c,
d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\cos ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx &=\frac {2 \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{3 b d}+\frac {2 \int \frac {\frac {b}{2}-a \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{3 b}\\ &=\frac {2 \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{3 b d}+\frac {1}{3} \left (1+\frac {2 a^2}{b^2}\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}} \, dx-\frac {(2 a) \int \sqrt {a+b \cos (c+d x)} \, dx}{3 b^2}\\ &=\frac {2 \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{3 b d}-\frac {\left (2 a \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{3 b^2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {\left (\left (1+\frac {2 a^2}{b^2}\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{3 \sqrt {a+b \cos (c+d x)}}\\ &=-\frac {4 a \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{3 b^2 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 \left (1+\frac {2 a^2}{b^2}\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{3 d \sqrt {a+b \cos (c+d x)}}+\frac {2 \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{3 b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.62, size = 137, normalized size = 0.83 \[ \frac {2 \left (2 a^2+b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )+2 b \sin (c+d x) (a+b \cos (c+d x))-4 a (a+b) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{3 b^2 d \sqrt {a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^2/Sqrt[a + b*Cos[c + d*x]],x]

[Out]

(-4*a*(a + b)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticE[(c + d*x)/2, (2*b)/(a + b)] + 2*(2*a^2 + b^2)*Sqrt[
(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)] + 2*b*(a + b*Cos[c + d*x])*Sin[c + d*x])/(
3*b^2*d*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

fricas [F]  time = 0.94, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\cos \left (d x + c\right )^{2}}{\sqrt {b \cos \left (d x + c\right ) + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(cos(d*x + c)^2/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )^{2}}{\sqrt {b \cos \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^2/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

maple [B]  time = 0.94, size = 453, normalized size = 2.75 \[ -\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a -b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (4 \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{2}+2 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a b -6 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{2}+2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a -b}{a -b}}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a -b}{a -b}}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) b^{2}-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a -b}{a -b}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{2}+2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a -b}{a -b}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a b -2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a b +2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) b^{2}\right )}{3 b^{2} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +\left (a +b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a +b}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2/(a+b*cos(d*x+c))^(1/2),x)

[Out]

-2/3*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(4*cos(1/2*d*x+1/2*c)^5*b^2+2*cos(1/2*d*x+1/2
*c)^3*a*b-6*cos(1/2*d*x+1/2*c)^3*b^2+2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/
2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2+(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*
b+a-b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^2-2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*co
s(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2+2*(sin(1/2*d*x+1/2
*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b
-2*cos(1/2*d*x+1/2*c)*a*b+2*cos(1/2*d*x+1/2*c)*b^2)/b^2/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)
^(1/2)/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )^{2}}{\sqrt {b \cos \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^2/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

mupad [B]  time = 0.56, size = 116, normalized size = 0.70 \[ \frac {2\,\sin \left (c+d\,x\right )\,\sqrt {a+b\,\cos \left (c+d\,x\right )}}{3\,b\,d}+\frac {2\,\sqrt {\frac {a+b\,\cos \left (c+d\,x\right )}{a+b}}\,\left (\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |\frac {2\,b}{a+b}\right )\,\left (2\,a^2+b^2\right )-2\,a\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |\frac {2\,b}{a+b}\right )\,\left (a+b\right )\right )}{3\,b^2\,d\,\sqrt {a+b\,\cos \left (c+d\,x\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^2/(a + b*cos(c + d*x))^(1/2),x)

[Out]

(2*sin(c + d*x)*(a + b*cos(c + d*x))^(1/2))/(3*b*d) + (2*((a + b*cos(c + d*x))/(a + b))^(1/2)*(ellipticF(c/2 +
 (d*x)/2, (2*b)/(a + b))*(2*a^2 + b^2) - 2*a*ellipticE(c/2 + (d*x)/2, (2*b)/(a + b))*(a + b)))/(3*b^2*d*(a + b
*cos(c + d*x))^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos ^{2}{\left (c + d x \right )}}{\sqrt {a + b \cos {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2/(a+b*cos(d*x+c))**(1/2),x)

[Out]

Integral(cos(c + d*x)**2/sqrt(a + b*cos(c + d*x)), x)

________________________________________________________________________________________